My Math Space
Login with your email for the best experience.
August/28 2024: Try our new AMC 8/10 courses. Boost your rating by doing online tests

Hightlight of the week

Problem of the day

There is a unique sequence of integers $a_1, a_2, \cdots a_{2023}$ such that\[\tan2023x = \frac{a_1 \tan x + a_3 \tan^3 x + a_5 \tan^5 x + \cdots + a_{2023} \tan^{2023} x}{1 + a_2 \tan^2 x + a_4 \tan^4 x \cdots + a_{2022} \tan^{2022} x}\]whenever $\tan 2023x$ is defined. What is $a_{2023}?$ $\textbf{(A) } -2023 \qquad\textbf{(B) } -2022 \qquad\textbf{(C) } -1 \qquad\textbf{(D) } 1 \qquad\textbf{(E) } 2023$

Latest update

Math competition comprehensive report.

Adaptive math practice Watch video tutorial